A labeled-tree approach to semantic and structural data interoperability applied in hydrology domain

نویسندگان

  • Nimmy Ravindran
  • Yao Liang
  • Xu Liang
چکیده

The issues of data integration and interoperability pose significant challenges in scientific hydrological and environmental studies, due largely to the inherent semantic and structural heterogeneities of massive datasets and non-uniform autonomous data sources. To address these data integration challenges, we propose a unified data integration framework, called Hydrological Integrated Data Environment (HIDE). HIDE is based on a labeled-tree data integration model referred to as DataNode tree. Using this framework, characteristics of datasets gathered from diverse data sources – with different logical and access organizations – can be extracted and classified as Time–Space–Attribute (TSA) labels and are subsequently arranged in a DataNode tree. The uniqueness of our approach is that it effectively combines the semantic aspects of the scientific domain with diverse datasets having different logical organizations to form a unified view. Further, we also adopt a metadata-based approach for specifying the TSA-DataNode tree in order to achieve flexibility and extensibility. The search engine of our HIDE prototype system evaluates a simple user query systematically on the TSA-DataNode tree, presenting integrated results in a standardized format that facilitates both effective and efficient data integration. 2010 Elsevier Inc. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hospital information systems interoperability in Iran

Introduction: Interoperability is needed when the Hospital Information System (HIS) data should be combined and shared with different systems. This study was aimed to determine the semantic and technical interoperability of hospital information systems of Iran’s health care centers and propose guidelines to create and develop interoperability of these centers. Methods: This descriptive st...

متن کامل

Public Transport Ontology for Passenger Information Retrieval

Passenger information aims at improving the user-friendliness of public transport systems while influencing passenger route choices to satisfy transit user’s travel requirements. The integration of transit information from multiple agencies is a major challenge in implementation of multi-modal passenger information systems. The problem of information sharing is further compounded by the multi-l...

متن کامل

Query Architecture Expansion in Web Using Fuzzy Multi Domain Ontology

Due to the increasing web, there are many challenges to establish a general framework for data mining and retrieving structured data from the Web. Creating an ontology is a step towards solving this problem. The ontology raises the main entity and the concept of any data in data mining. In this paper, we tried to propose a method for applying the "meaning" of the search system, But the problem ...

متن کامل

Sample-oriented Domain Adaptation for Image Classification

Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it. The conventional image processing algorithms cannot perform well in scenarios where the training images (source domain) that are used to learn the model have a different distribution with test images (target domain). Also, many real world applicat...

متن کامل

VHR Semantic Labeling by Random Forest Classification and Fusion of Spectral and Spatial Features on Google Earth Engine

Semantic labeling is an active field in remote sensing applications. Although handling high detailed objects in Very High Resolution (VHR) optical image and VHR Digital Surface Model (DSM) is a challenging task, it can improve the accuracy of semantic labeling methods. In this paper, a semantic labeling method is proposed by fusion of optical and normalized DSM data. Spectral and spatial featur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Inf. Sci.

دوره 180  شماره 

صفحات  -

تاریخ انتشار 2010